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A P P L I C A T I O N  OF T H E  M E T H O D  OF B O U N D A R Y  

E L E M E N T S  A N D  P A R A M E T R I C  P O L Y N O M I A L S  

IN A I R F O I L  O P T I M I Z A T I O N  P R O B L E M S  

S. M. Aul 'chenko  and A.  F. Latypov UDC 533.6.011 

In the present paper, we describe a method for solving design problems of optimum two-dimensional 
configurations. The method includes a modified variant of the method of boundary elements for solving 
external-flow problems. Examples of application of this method in designing subsonic airfoils with given 
characteristics are given. 

An important problem of applied sub- and transonic aerodynamics is the design of airfoils with desired 
aerodynamic characteristics. This necessitates the creation of optimal airfoils with the extreme value of some 
specific parameter (for example, lift force, lift-to-drag ratio, critical Mach number, pitching moment, etc.). 
Correctness of the problem formulation determining the existence of a sensible solution and the success in 
practical design depend on a correct account of constraints. The constraints can be of a different nature: 
aerodynamic (on the lift force and the pitching moment), gasdynamic (on the nonseparated and subsonic flow 
regimes), geometric (on the airfoil area, the curvature, and the thickness), and algorithmic (for example, on 
the smoothness of the functions that specify the airfoil contour). In [1, 2], Aul'chenko and Elizarov et al. used 
direct methods and the methods for solving inverse boundary-vMue problems. The authors of the present 
paper proposed and tested some new approaches to solution of these problems, which were reported in [3-6]. 
In the present paper, we describe a technique for designing plane optimal configurations, based on the method 
of boundary elements for calculation of subsonic two-dimensional perfect gas flows. The proposed technique 
is a continuation of the method of [7] and employs the linear, rather than constant, density distribution of 
the sources over the boundary elements, thereby increasing the accuracy of calculations with no increase in 
the number of these elements and in the dimension of the matrix to be inverted. To describe the geometry 
of the desired boundary which is the airfoil contour to be designed, we propose a technique which is based 
on the use of fourth-order parametric polynomials with a special choice of conjugate points and which is free 
of possible oscillations upon variation of the governing parameters and covers a wide class of configurations. 
Optimization is performed by the gradientless method of search with adaption and with the use of a random 
element intended for minimization of functions of numerous variables if there are functional constraints in the 
form of equalities and inequalities [8]. 

A l g o r i t h m  for So lv ing  t h e  Flow P r o b l e m .  Having applied the relations 

d ivV = OV/Os + VOO/On, OV/Os = V/(M 2 - 1)O0/On, OV/On = VOO/Os, (1) 

we can write the differential equations of an inviscid vortex-free gas flow in the form 

V V  = M2OV/Os, (2) 

where s is the direction along the tangent to the streamline, n is the normal to it, 0 is the angle of inclination 
of the velocity vector, and M is the local Mach number. 
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After introducing the disturbance potential ~ such that  V = V(I) + V~,  with allowance for (1) and 
(2), we obtain 

A ~  -= M2OV/Os -- Q(M, V) (3) 

(Vcr = V ~  is the free-stream velocity). The no-slip condition at the airfoil boundary imposes the following 
requirement on ~: 

! 
~n = - V e c n .  (4) 

A numerical realization of the Kut ta-Joukowski  relation for an airfoil with zero angle of the trailing edge is 
the requirement of equal tangential  velocities at the points with radius-vectors ~h and ~d at the upper and 
lower airfoil surfaces, respectively, if the condition 

is satisfied (~e corresponds to the end point of the airfoil and e << 1). The origin of the Cartesian coordinate 
system (x, y) is the ext reme left point of the airfoil, and the x axis is directed along its chord. 

Using Green's theorem, we can write the potential  as 

~(z)  (5) 
l 

c D 

(D is the domain external to the contour C, f(z) = In z/27r, q and are the densities of the source and 
vorticity distributions on the contour, and Q is the source density in D). 

On the basis of (5), we can obtain relations for the no-slip conditions at the point ~i and also for the 
Kutta-Joukowski conditions (4): 

i q(~)(Oln r(~i, ~)lOni d~x - O0(~i, ~)/Oni d~y) - oa(O0(~i, ~)lOni d~z 
c 

+ 01n r(~i, ~)/Oni d~u) = - 2 r V o c n  - i Q(s)01n r(~i, s)/Oni ds; (6) 
D 

[[q($,)(Oln r(~h, ~,)/O~h -- 01n r(~d, ~)/Ovd) d ~  - (O0(~h, ~)/0rh - 00(~, d, ~)lOrd)] d~y 
c 

- w[(O0(~, h , ~,)/Ovh -- 00(~ d, ~)/0~'d)d~z + (01n r(~ h, ~)lO~'h - 01n r(~d, ~)/0"rd) ] d~y 

= 2~'Vcc('rh - "rd) -- [ Q ( s ) ( O  l n r (~h ,~ ) /0 rh  - 0 ln r (~d ,~ ) /0 rd  ) ds. (7) 
D 

Here r(~i,~) = q(~iz - ~ )2  + (~iy - ~y)2, ~i and ~ are the radius-vectors of the corresponding points on the 
contour, s is the radius-vector of a point in this region, O(~i,~,) is the angle between the vectors ~i and ~. 
ni is the normal at the point ~i, and r h and v d are the vectors tangent to the contour at the points with 
radius-vectors ~h and ~d. 

Let us split the contour C and the domain D into N and into K elements,  respectively. For 
discretization, the domain D is covered by a nonuniform grid of type C, and, in computat ions,  we also 
use its subdomain DK whose length is equal to five lengths of the chord along the x axis and four lengths of 
the chord along the y axis. The  computat ions show that  the chosen position of the external boundary of the 
domain DK ensures the satisfaction of the undisturbed-flow condition on it with the same accuracy as the 
solution of the equations. Let the source density at the boundary element Ii be dis tr ibuted according to the 
following linear law: 

q ( r / ) = q i _ i f l + q i f 2 ,  f l  = ( I - q ) / 2 ,  f2 = ( l + q ) / 2 ,  r 1E (--1,1). 
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Relation (6) then takes the form 

N 1 

ljqj-1 f fl(r/)(Oln 
j=l -1 

N 1 
ri j /Oni drlz - OOij/Oni drly) + ~_. ljqj J f2(r/)(01n ri~/Oni drl~ - cgOij/Oni drly) 

j=l -1 

N 1 K 
- 2,J +Olnri j lOnidr lu)= - 4 r V = n ,  - 2  y'~ Qk f Olnr,klOn, ds. 

j=l -1 k=l AS k 

Introducing the notation 

1 

91j = lj f f l ( r l ) (Olnr i j /Oni  drlz - OOij/Oni drly), 
-1 

1 
92 = lj f f2(r/)(01n rij /Oni drl. - OOij/Orqdrly), 

-1 

GO = g~j+, + g~j (J = 1 , . . . ,  N - 1), GiN = g~l + g?N, 

N 1 
GiN+I = E l j  f (ooij/Oni dq~ + Olnri j /Oni  drly), 

j=l -1 

K 
Hi = -4a'Vooni - 2 ~_, Qk f Olnr ik /Onids ,  

k=l AS k 

we obtain the following system of algebraic equations for N collocation points ~i (i = 1 , . . . ,  N) on the contour: 

G q  = H. (8) 

The coefficient matrix G consists of the elements Gij (i = 1 , . . . ,  N and j = 1 , . . . ,  N + 1); the vector on the 
right-hand sides is H = ( H 1 , . . . ,  HN), and the vector of solution is q = (q l , . . .  ,qN,w) .  A standard form of 
the equation closing system (8) is found from (7) using the following notation: 

1 

fx (0 In r hj / Orb drl~ - OOhj / Ora drl u ), g~j = lj f A (0 In r hj / Orb drl~ - OOhj / O'rh drl u ), 
1 

g~j = lj f 
-1 

1 

-1 
12 

ghj = 

f l (O In rajlOrd drT~ - OOdjlO~'a d~y), 

1 

-1 

1 

g~j = lj f f2(Olnrdj/Orddrl~ --OOdffO~ddrly), 
-1 

12 ghN gl 1 + g2N, 12 = gdN = g~l + g~N' 

(j = 1, . . . , N), 

N 1 
= -- y~. l j / (OOhj /Orh  -- OOdj/Cgra)drl~ + (01n rhj/Orh -- 01n GN+I,N+I rdj / OTd ) &ly , 

j=l -1 , 1  

K 
= 4~rV~('r'h -- Vd) -- 2 y~ Qk / (Olnrhk/Orh -- OlnrdjOra)  ds. HN+I 

k----1 AS k 

The resulting system is solved by the method of simple iterations over the nonlinear right-hand side. The 
initial value of Q in the domain is assumed to be equal to zero, which corresponds to the incompressible 
flow. The following procedure for calculating Qk in the cells ASk of the domain in each iteration is used. 

235 



Fig. 1 

Differentiation of (5) with respect to x and y at the boundary points and at the cell center ASk (Fig. l) 
yields the velocity values Va, Vb, Vc, Vd, and Vk. In the finite-difference approximation, we have 

OVk/OS(S~l ) + OVk/On(nXi)  = OVk/cgA1 = (Vb - Va)/ba, 

OVk/Os(sX2) + OYk/On(nX2) = OVk/OA2 = (Vd -- Vc)/dc, 

whence 

Then 

OVk/Os = (OVklcO~l(nA2) - OVk/cg~2(nA1))l((sA1)(nA1) - (sA2)(nA1)). 

Qk = [ (VdVoo)2M~/ (1  - ((7 - 1)/2)M~(1 - (ydyoo) ))]oydo . 
R e p r e s e n t a t i o n  of  t h e  G e o m e t r y .  In design problems of optimal configurations, it is always 

necessary to describe the desired boundary. In problems of hydrodynamics and subsonic aerogasdynamics, the 
functions should usually have at least first-order smoothness. In the course of their determination, depending 
on the method of representation, one needs to vary the governing parameters: either nodes' coordinates or 
polynomial coefficients, etc. Generally speaking, this can induce "parasitic" oscillations, which deteriorates the 
correctness of optimization problems. There are various methods [9] for designing curves and surfaces, among 
which we note the Fergusson-Bernstein-Bezier method of polynomial curves. However, a large number of 
governing parameters are required for generation of a desired boundary from numerical solution of optimization 
problems. This leads, in particular, to high-order Bezier curves, which weakens substantially the link between 
the characteristic broken line and the line obtained. A method based on the use of parametric polynomials with 
a special choice of the conjugation points of interpolation intervals which is exempt from the above-mentioned 
disadvantages is suggested. This method is described in detail in [10]. 

The airfoil contour is constructed as follows. For its upper part, the values of rh, x ~ , . . . ,  XhN, y h , . . . ,  Y~V, 
h and y~ are the abscissas and ordinates of are set. Here rh is the radius of curvature of the contour head, x i 

the frame nodes (the center of the circle lies on the x axis), and XhN = 1 and y~ = 0. The coordinates of the 
point of conjugation of the arc at the airfoil head with the first section of the frame are calculated with the 
requirements of first-order smoothness taken into account. Subsequent construction of the curve has a local 

x h x~] and rxh x h ] character: on [ i-1, t i ,  i+lJ, the nodes z~_ 1 and z~ are chosen from the condition of a constant-sign 
second derivative at which the conjugation of first-order smoothness with the neighboring segments is ensured 
in these nodes, and a curve specified by a fourth-order parametric polynomial is constructed on the section 
[zh_l, zh]. The above algorithm for constructing curves inscribed in the frame is repeated from the first to the 
end point. The varied parameters for optimization are rh, x~, and y~, and the quantities T/~ which determine 
-h inside the allowable interval. The lower section of the contour is constructed in a similar way. 
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TABLE 1 
i 

Ordinal number Moo 

1 0.5 
2 0.7 
3 i 0.5 
4 ! 0.5 

Ka Ct 

82.1 0.586 
62.2 0.402 
15.0 1.198 
29.4 0.600 

Cd 

0.007 
0.006 
0.079 
0.020 

C,, 

-0.245 
-0.191 
-0.510 
-0.019 

dmax, % SC 

11.9 0.074 
11.2 0.072 
11.3 O.O66 
11.6 0.068 

F o r m u l a t i o n  of Optimization P r o b l e m s .  Let us design an airfoil that satisfies the following 
aerodynamic 

Moo=cons t ,  M <  1, CI > C o , f ( s )  > fo, v~o < c~ < (~l, 

and geometric 

dmax < d l ,  So < SC, b = c o n s t ,  contour C E C I ( 0 , 1 )  

constraints and provides a minimum (maximum) to a certain objective function. Here Moo is the free-stream 
Mach number, f ( s )  is the form factor, s is the length of the arc along the contour, f0 is an empirical constant 
correlated with the chosen flow-without-separation criterion, a is the angle of attack relative to the chord. 
dmax is the maximum airfoil thickness in percent, Sc  is the airfoil area, and b is the length of the airfoil chord. 
As objective functionals, we chose the maximum lift-to-drag ratio Ft = Ka, the maximum lift coefficient 
F2 = Cl, and the minimum pitching moment F3 = Cm ( Ka = Cl/Ca, where Cd is the drag coefficient). 

One can substantially facilitate the process of airfoil design taking into account the fact that the flow 
past wings occurs mainly at high (of the order of 105-106) Reynolds numbers. In such a flow regime, the 
viscosity exerts some effect only in a fairly thin layer, and, hence, should be taken into account within the 
framework of the boundary-layer model. The Cd value can be approximately calculated using the known 
Squire--Young's formula, and the value of f0 can be taken from the Kochin-Loitsyanskii flow-without- 
separation criterion. 

C a l c u l a t i o n  R e s u l t s .  Figure 2 shows the designed airfoil possessing a maximum lift-to-drag ratio 
for the following values in constraints: Moo = 0.5, C~ = 0, f0 = -2.5,  a0 = - 5  ~ oq = 20 ~ dm~x < 12%. 
So = 0.06, and b = 1. As the initial airfoil, we used an arbitrary symmetric contour in flow at zero angle of 
attack. This figure also shows the distribution of the pressure coefficient C v over the upper and lower contours. 
The integral and geometric characteristics of the optimal airfoil obtained are given in Table 1 (row No. l). 

Figure 3 shows the designed airfoil possessing a maximum lift-to-drag ratio with the same values of the 
constraints except for Mr162 = 0.7. The optimal contour from the previous problem was taken as the original 
countor. The integral and geometric characteristics of the modified airfoil are listed in Table 1 (row No. 2). In 
the pressure-coefficient distribution on the upper contour, one can see that the critical value of C~ = -0.7~ 
is reached. The airfoil itself has the negative curvature -0.372%, which is typical of transonic airfoils. 

The designed airfoil with a maximum lift force for Mcr = 0.5 and under the above-listed constraints is 
shown in Fig. 4. The optimal contour from the first problem was again taken as the original one. The airfoil 
characteristics obtained are given in Table 1 (row No. 3). Compared with the original airfoil (row No. 1), the 
coefficient Cl is increased by a factor of two, and the displacement of the tongue of concavity to the extreme 
positions typical of airfoils with high CI is observed. For the airfoil in Fig. 4, the abscissa of its maximum 
curvature is x f  = 0.14. 

Figure 5 shows the designed airfoil with a minimum value of the pitching-moment coefficient Cm with 
the lift-force coefficient bounded from below CI > 0.6. The remaining constraints are the same. The previous 
optimal contour was taken as the original one. The characteristics are listed in Table 1 (row No. 4). Clearly. 
the considerable decrease in Cm is caused by a decrease in CI (its value is outside the boundary) and also 
because the center of pressure is shifted toward the front part of the airfoil: the abscissa of the center of pressure 
is 0.329 for the contour obtained and 0.424 for the original one. The number of the boundary elements N on 
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-1.7 
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Fig. 4 Fig. 5 

the contour C was 70, and the number of the cells K in the subdomain DK was 1360. 
In conclusion, we note the following. When direct methods are used to solve optimization problems, the 

decisive condition of the efficiency of algorithms for flow calculations is the uniform accuracy for the entire 
set of configurations to be calculated in the course of the search. The proposed algorithm for solving the 
direct problem satisfies this requirement, since the structure of the inverted matrix G is not dependent on the 
discretization of the domain, and, hence, the possibility of losing the accuracy of calculation of functionals with 
arbitrary variation in the free boundary is eliminated. This advantage of the algorithm over finite-difference and 
finite-element methods makes it possible to obtain solutions for finite variations of the geometric parameters 
of the original contour, which is illustrated by the above calculations. This circumstance is of importance, 
since owing to the nonlinear dependence of the functionals on the airfoil geometry and also to the presence 
of constraints, the solutions obtained are the local extrema of the problem. 
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